
An Efficient TCAM-Based Implementation
of Multipattern Matching Using

Covered State Encoding
SangKyun Yun, Member, IEEE Computer Society

Abstract—This paper proposes a state encoding scheme called a covered state encoding for the efficient TCAM-based

implementation of the Aho-Corasick multipattern matching algorithm, which is widely used in network intrusion detection systems.

Since the information of failure transitions of the Aho-Corasick Nondeterministic Finite Automata (NFA) is implicitly captured in the

covered state encoding and the failure transition entries can be completely eliminated, the Aho-Corasick NFA can be implemented on

a TCAM with smaller number of entries than other schemes. We also propose constructing the modified Aho-Corasick NFA for

multicharacter processing, which can be implemented on a TCAM using the covered state encoding. The implementation of modified

Aho-Corasick NFA using the covered state encoding is also superior to other schemes in both TCAM memory requirement and lookup

speed.

Index Terms—String matching, multipattern matching, TCAM, intrusion detection system, Aho-Corasick algorithm.

Ç

1 INTRODUCTION

WITH increased growth in malicious network activity,
Network Intrusion Detection Systems (NIDS) are

being devised and deployed to detect the presence of any
malicious or suspicious content in packet data. Signature-
based NIDS rely on a multipattern matching algorithm.
Traditional software-based NIDS architecture fails to keep
up with the throughput of high-speed networks because of
the large number of patterns and complete payload inspec-
tion of packets. This has led to hardware-based schemes for
multipattern matching. Since the rule sets are continuously
updated, memory/ternary content addressable memory
(TCAM)-based architecture [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11] and FPGA-based architecture [12], [13], [14],
[15], which are a programmable or reconfigurable, are
commonly adopted for a hardware-based pattern matching.

Most multipattern matching solutions today are based
on the Aho-Corasick (AC) algorithm [16]. It performs
multipattern matching in linear time based on constructing
a finite state machine to do so. A finite state machine can be
efficiently implemented using the TCAM-based architec-
ture, where the number of TCAM entries is equal to the
number of transitions in the state machine. A TCAM has the
“don’t care” matching feature, which can be used in
reducing the number of TCAM entries. Gould et al. [3]
proposed a method to reduce the number of TCAM entries
by using a logic minimization method. Alicherry et al. [1],
[2] proposed a state encoding scheme exploiting the “don’t

care” feature of TCAMs, where some transitions are
eliminated in the TCAM entries. Their methods, however,
have limitations in reducing the number of entries since
they are based on a deterministic finite automaton (DFA) of
the AC algorithm which has much more transitions than the
corresponding nondeterministic finite automaton (NFA).
The NFA can be implemented with smaller TCAM entries
than the DFA although it makes more transitions than the
DFA during the pattern matching due to failure transitions.

In this paper, we present a state encoding scheme called
a covered state encoding, which takes advantage of the “don’t
care” feature of TCAMs in the TCAM-based implementa-
tion of the AC algorithm. Since the information of failure
transitions in the NFA of the AC algorithm is implicitly
captured in the covered state encoding, the failure transi-
tion entries can be completely eliminated in the proposed
scheme and one can further substantially reduce the
memory requirement.

This paper is organized as follows: Section 2 presents
related work. Section 3 proposes a covered state encoding
scheme and the corresponding algorithms. Section 4 evalu-
ates the covered state encoding scheme. Section 5 presents a
multicharacter processing scheme using a covered state
encoding. Section 6 includes concluding remarks.

2 RELATED WORK AND PROBLEM ANALYSIS

The multipattern matching problem is defined as finding
occurrences in a text string T , of any pattern in a set of
patterns P ¼ fP1; P2; . . . ; Pqg. This problem was first solved
by Aho and Corasick [16]. The AC algorithm first constructs
a finite state machine from the set of patterns and then uses
the finite state machine to process the text string in a single
pass. The algorithm builds a nondeterministic finite auto-
maton by constructing the goto and failure transitions and
then converts it into a deterministic finite automaton. A
DFA has more transitions than the corresponding NFA.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012 213

. The author is with the Department of Computer and Telecom. Engineering,
Yonsei University, Wonju, Gangwon 220-710, Korea.
E-mail: skyun@yonsei.ac.kr.

Manuscript received 20 May 2010; revised 26 Oct. 2010; accepted 18 Nov.
2010; published online 9 Dec. 2010.
Recommended for acceptance by R. Figueiredo.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2010-05-0307.
Digital Object Identifier no. 10.1109/TC.2010.273.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Fig. 1 shows the finite state machines for the set of
patterns {he, she, his, hers} built by the AC algorithm. In the
NFA, the solid lines and dotted lines represent goto and
failure transitions, respectively. In the DFA, the dotted lines
represent transitions, called by cross transitions, which are
newly added by eliminating failure transitions. Shaded
states represent the pattern matching states called output
states. The trivial transitions going to the initial state are
omitted in the figure.

The pattern matching can be performed using either the
NFA or the DFA. To match a string, one starts from the initial
state (usually 0). If a goto transition or a cross transition is
matched with an input in the current state, the current state
is moved along the matched transition. Otherwise, for a
DFA-based matching, the current state goes back to the
initial state and the matching process repeats for the next
input, and for an NFA-based matching, the current state is
moved along its failure transition and the matching process
repeats for the current input. The DFA examines each input
only once while the NFA may examine each input several
times along the failure transition path. In matching a text
string of length n, the DFA makes n state transitions and the
NFA makes fewer than 2n state transitions [16]. Thus, the
AC algorithm has a deterministic execution time.

The AC DFA requires a large amount of memory in a
straightforward RAM-based implementation that keeps a
table of pointers to next states for every input since the
table contains also trivial transitions which go back to the
initial state. Tan et al. [9] and Lunteren [10] proposed
methods reducing the memory requirement in the RAM-
based implementation.

The AC DFA can be implemented more efficiently using a
TCAM since it needs only nontrivial transitions. Yu et al. [5]
proposed a TCAM-based multibyte multiple string match-
ing algorithm with limited support for wildcards. Weins-
berg et al. [6] presented a pattern matching algorithm called
Rotating TCAM (RTCAM) improving Yu et al.’s scheme.
However, two TCAM-based schemes are not the imple-
mentation of Aho-Corasick finite state machines. Fig. 2

shows the TCAM-based hardware architecture for a finite
state machine. The architecture consists of a TCAM, SRAM,
and a logic. Each TCAM entry represents a lookup key,
which consists of current state and input, and has corre-
sponding data, which is the next state, in the SRAM whose
address is given by the TCAM output. Two registers current
state and input are initialized to the state 0 and the start data
of the input buffer, respectively. If there is a matching entry
for the state and input value in the TCAM, the TCAM
outputs the index of the matching entry and then the SRAM
outputs the next state data located in the corresponding
location. Because a TCAM has “don’t care” bits, multiple
entries can be simultaneously matched and when this is the
case, the index of the first matched entry is outputted. If
there is no such match in the TCAM, the next state is the
initial state. At every state transition, an input is advanced to
the next input and the next state value is stored into the
current state register.

Each TCAM entry represents a transition in the state
machine. The number of TCAM entries is equal to the
number of transitions and independent of the number of
states. For a transition gðs; iÞ ¼ t, where s is a current state, i is
an input, and t is the next state, we will simply represent a
pair of TCAM and SRAM entry by the combined form ðs; ijtÞ.

Although the AC DFA has deterministic execution time,
the number of transitions increases rapidly as the number of
patterns increases. This makes the TCAM-based implemen-
tation impossible when there are a large number of
patterns. In order to solve this problem, Alicherry et al.
[1], [2] proposed a state encoding exploiting a “don’t care”
feature of TCAM, which can implement a DFA with a much
smaller number of TCAM entries than the number of
transitions in the DFA. We call the distance from the initial
state to a given state as its depth, and a cross transition
which goes to a depth i state as depth i transition. In their
encoding, the current state 0 in the TCAM is replaced with
“� � ��,” which is matched with any state, and all depth 1
transitions are eliminated in the TCAM since they are
covered by the entries with current state “� � ��.” Since
most of cross transitions in the AC DFA are at depth 1, this
encoding reduces significantly the number of TCAM
entries. In their work, they can also propose state encoding
schemes eliminating the higher depth transitions by
suffixing the state encoding by the prefix string from the
root node to that state such as “����h” and “����he.” In
order to eliminate all the depth � m transitions, the current
state field requires ðm� 1Þ bytes additionally. Thus, these
encoding schemes are inefficient since they require encod-
ing the states with a larger width.

Fig. 3 shows the TCAM entries in several encodings: no
optimization and Alicherry’s codings with several depths. In

214 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

Fig. 1. Aho-Corasick finite automata for {he, she, his, hers}. (a) Goto and
failure transitions (NFA). (b) DFA.

state input next state

TCAM SRAM

addrin
pu

t
cu

rr
en

t s
ta

te
in

pu
t

cu
rr

en
t s

ta
te

Fig. 2. TCAM-based hardware architecture.

the entries with no optimization, the left entries are goto
transitions in the NFA and the right entries are cross
transitions. The entries marked as “�” are cross transitions
eliminated when the depth of the state encoding is increased.
The entries marked as “

p
” are goto transitions whose current

state field is replaced with the state including “don’t care”
when the depth of the state encoding is increased. Note that
the TCAM entries containing “don’t care” must be located in
the last positions since they have the lowest priority.

Recently, Bremler-Barr et al. [11] proposed a novel
method called CompactDFA to compress the DFA entries in
the TCAM-based implementation. Although CompactDFA
originated from essentially the same idea as Alicherry’s
encoding which eliminates cross transitions by suffixing the
state encoding by the prefix string from the root node to that
state, it provides more efficient encoding scheme than
Alicherry’s encoding by constructing the common suffix tree
and encoding the states, and it eliminates all the cross
transitions. However, CompactDFA state encoding is still
nonoptimal and its building algorithms are more or less
complex since the CompactDFA is built from AC DFA.

In this paper, we propose a new state encoding scheme
in TCAM-based implementation of AC NFA. We can
reduce the number of TCAM entries to the number of goto
transitions in the NFA by fully utilizing the “don’t care”
feature of TCAM using a novel state encoding.

3 COVERED STATE ENCODING SCHEME

3.1 Basic Idea

Since the AC NFA has a smaller number of transitions than
the AC DFA, the NFA can be implemented with smaller
TCAM entries than the DFA. The number of TCAM entries
in the NFA-based implementation is the sum of the number
of goto transitions and the number of nontrivial failure
transitions in the NFA.

In the NFA-based architecture, 1-bit field F indicating a
failure transition is added in each SRAM entry. If an entry is
associated with a failure transition, its F is 1 and its input
field is “�” which can match with any input value. Fig. 4a
shows TCAM/SRAM entries for the AC NFA in Fig. 1a. If
the matched transition is a failure transition, or F ¼ 1, an

input is not advanced and current input is used again at the
next matching. One character may be repeatedly processed
along the states in the failure transition path until a
nonfailure transition is matched (F ¼ 0) or a state goes
back to the initial state, which is a major disadvantage of the
NFA-based architecture.

If we exploit the “don’t care” feature of a TCAM, we
can encode states so that a code covers some other codes.
For example, code ���� covers all of 4-bit codes and code
11�� covers four codes 1100, 1101, 1110, and 1111. We call
a code each bit of which consists of 0 or 1 by a unique
code, and a code each bit of which consists of 0, 1, or “�”
by a cover code. Since the next state field in the SRAM
cannot store “�,” it should be represented by a unique
code. However, the current state field in the TCAM can
store a cover code.

The failure transition graph is a graph consisting of only
failure transitions in the AC NFA. In a failure transition
graph, the set of all the predecessors of a state s is denoted
by PREDðsÞ and the set of all the successors of a state s is
denoted by SUCCðsÞ. Fig. 5 shows SUCCðsÞ and PREDðsÞ
for a state s in a failure transition graph. If current state
fields of TCAM entries associated with each state t are
replaced with a cover code to cover not only state t but also
all its predecessors PREDðtÞ, we can simultaneously
examine all the entries of s and SUCCðsÞ for a current
state s since s is a predecessor of SUCCðsÞ and the failure
transition entries are not needed any longer.

Fig. 4b shows TCAM/SRAM entries in a new state
encoding. In this figure, each current state field also includes
predecessor states which it should cover. Note that the
entries of a state s should be located more front than the
entries of SUCCðsÞ since it has the priority. In this example,
assume that the current state is 4. The current state 4 can
match three entries 2, 5, and 6. If input is “e,” two entries 2
and 5 are exactly matched and the index of the front entry 2

YUN: AN EFFICIENT TCAM-BASED IMPLEMENTATION OF MULTIPATTERN MATCHING USING COVERED STATE ENCODING 215

Fig. 3. TCAM/SRAM entries in several schemes.

Fig. 4. TCAM/SRAM entries in NFA-based architecture.

Fig. 5. SUCCðsÞ and PREDðsÞ in a failure transition graph.

is outputted. If input is “i,” one entry 6 is matched. If input is
“h” or “s,” two entries 7 and 8 are matched. Otherwise, there
is no matched entry and the next state becomes the initial
state 0. Since this operation is performed at one step in the
new scheme, the NFA can also process a text string with the
same number of transitions as the DFA.

We call a new encoding scheme to make the basic idea
possible by covered state encoding. In the covered state
encoding, each state s has two state encoding: a unique
code u codeðsÞ used in the next state field and a cover code
c codeðsÞ used in the current state field. Let CPREDðsÞ ¼
PREDðsÞ [fsg. In covered state encoding, a code of each
state should be assigned so that the following conditions
are satisfied:

1. c codeðsÞ should cover u codeðtÞ for any state t in
CPREDðsÞ.

2. c codeðsÞ should not cover u codeðtÞ for any state t
which is not in CPREDðsÞ.

3.2 Covered State Encoding Algorithm

Now, we propose an algorithm for performing the covered
state encoding for the AC NFA. The proposed algorithm
consists of four stages as follows:

. Step 1. Construct a failure tree.

. Step 2. Determine the size (or dimension) of a cover
code of each state.

. Step 3. Assign a unique code and a cover code to
each state.

. Step 4. Build the TCAM entries.

3.2.1 Construction of a Failure Tree

The failure transition graph is a graph consisting of only
failure transitions in the AC NFA. We can avoid making
unnecessary failure transitions by using a generalization of
the next function from [17]. At first, we construct a failure
tree by reversing failure transitions in the failure transition
graph so that each state s can easily find PREDðsÞ. The
initial state becomes a root of the failure tree and the set of
all descendants of a state s in the failure tree is PREDðsÞ.

3.2.2 Determining the Size of a Cover Code

The number of “�” bits in a cover code is called its dimension
and the number of unique codes covered in a cover code is
called its size. The dimension and size of the cover code of a
state s are represented by dimðsÞ and sizeðsÞ, respectively.
sizeðsÞ is 2dimðsÞ. If a state s has no child in a failure tree,
dimðsÞ is 0 since c codeðsÞ need not cover any other code,
and its cover code is the same as its unique code. If a state s
has any children in a failure tree, c codeðsÞ should cover not
only u codeðsÞ but also c codeðcÞ for its all children c. The
sizeðsÞ is greater than or equal to 1þ

P
c sizeðcÞ, where c is a

child. Therefore, the dimension of a state s is determined by
the following equation:

dimðsÞ ¼ dlog2 1þ
P

c 2dimðcÞ
� �

e; if s has children c;
0; otherwise:

�
ð1Þ

The dimensions of all states are recursively determined
during the calculation of dimð0Þ, where 0 indicates the
initial state.

3.2.3 Assigning State Codes

For a state s, the unique code u codeðsÞ can use a code
covered by c codeðsÞ and we use a code obtained by
replacing � with 0 in c codeðsÞ as u codeðsÞ. The codes are
recursively assigned. At first, the code of the root 0 is
assigned as follows: c codeð0Þ ¼ �� � � � � and u codeð0Þ ¼
00 . . . 0. For a state s, the codes of its children are assigned in
decreasing dimension order in order to assign codes
efficiently. The code of each child is assigned from upper
codes in the range covered by the c codeðsÞ.

Fig. 6 shows the failure tree for AC NFA in Fig. 1a. In the
example, the dimension of a root is 4 and it has five children
whose dimensions are 2, 1, 1, 0, and 0, respectively. The
cover codes of the children are assigned 11��, 101�, 100�,
0111, and 0110. Their unique codes are 1100, 1010, 1000,
0111, and 0110 which are obtained by replacing � with 0.

The codes of children share the fixed bit values (0 or 1) of
the cover code of their parent and assign new values in
“don’t care” bit locations. The procedure AssignCode per-
forms Step 3 as described above.

procedure AssignCode(node s, int base)

// assign codes to this node s

u code½s� ¼ base // unique code

c code½s� ¼ covercodeðbase; dimðsÞ) // cover code

if s has no child then return

sort the children of node s in decreasing dimension

order

cbase ¼ baseþ 2dimðsÞ

// assign codes to children recursively

for each child node c of node s do

cbase ¼ cbase� 2dimðcÞ

AssignCode(c, cbase)

endfor

end

In the AssignCode procedure, covercode(base; dim) re-
turns the value where the lowest dim bits of the base are
replaced with a �. For example, covercodeð1100; 2Þ ¼ 11��.
Calling AssignCode(0,0) assigns the codes of all the states
recursively.

3.2.4 Building TCAM Entries

Any child entry in a failure tree should be located more
front than its parent entry in TCAM. The procedure
BuildTCAM builds TCAM/SRAM entries so that this
requirement is satisfied.

procedure BuildTCAM(node s)

// insert entries of children recursively

for each child node c of node s do

216 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

Fig. 6. The failure tree and covered state encoding.

BuildTCAM(c)

// insert the entry of this node s

for each goto transition gðs; iÞ of node s do

next ¼ gðs; iÞ
insert (c code½s�, i) into TCAM

insert (u code½next�) into SRAM

endfor

end

The procedure BuildTCAM guarantees the correct order of
entries since it inserts children in the failure tree first into
TCAM. Calling BuildTCAM(0) constructs all the TCAM/
SRAM entries recursively.

Example. Fig. 7 shows the TCAM entries using covered
state encoding, constructed by the proposed algorithm for
AC NFA in Fig. 1a. Fig. 8 shows the state transitions for the
input sequence “shershiss”. The initial state is 0. After
processing three input characters “she”, the state becomes 5.
Although there is no entry of state 5, the TCAM entry of
state 2 (c code ¼ 100�) is matched with input r in state 5
(u code ¼ 1001) and the state becomes 8. After processing
the following input sequence “shiss” from state 8, the state
becomes 3. Boxes in Fig. 8 represent the cases that an input
is matched with the TCAM entry of a failure transition state
of the current state.

4 EVALUATION OF COVERED STATE ENCODING

4.1 Memory Requirement

We used the Snort rule set version 2.8 [18] and ClamAV
version 0.96 antivirus signature [19] to evaluate the TCAM
memory requirement of the covered state encoding. The
Snort rule set has 5,169 patterns whose average length is
16.7 and ClamAV signatures have 30,385 patterns whose
average length is 67.4.

We compare the implementations of the AC DFAs using
Alicherry’s encoding of depth m (denoted by DFA-m) and
the CompactDFA with the implementation of the AC NFA
using the covered state encoding (denoted by AC NFA-c).

Let Tg and Tf be the number of goto transitions and the
number of failure transitions in the AC NFA, respectively.
In the AC NFA-c, the TCAM entries consist only goto

transitions and the number of TCAM entries is T ¼ Tg. The
number of TCAM entries in the CompactDFA is the same as
that in the AC NFA-c since the CompactDFA eliminates all
the cross transitions. Let Tc;i be the number of depth i
transitions in the AC DFA. In the DFA-m, the number of
TCAM entries is T ¼ Tg þ

Pdmax
i¼mþ1 Tc;i, where dmax is the

maximum depth.
Fig. 9a shows the numbers of TCAM entries in various

DFA-m (2 � m � 10Þ, CompactDFA, and AC NFA-c for
the Snort rule set and ClamAV signatures. As m increases,
the number of TCAM entries in DFA-m approaches that of
AC NFA-c.

In the DFA-m, the number of bits required for the state
encoding is E ¼ log2 S þ 8ðm� 1Þ bits where S is the
number of states [1]. In the AC NFA-c, the state code width
is E ¼ log2 S þ �, where � is the number of extra bits
required in the covered state encoding and depends on the
patterns. In the covered state encoding, the number of state
bits E is equal to the number of states S at the worst case. A
set of n strings fa1b1; a2a1b2; . . . ; anan�1 . . . a1bng, where bi 6¼
bj if i 6¼ j, is an example of the worst case. This case,
however, is almost impossible for practical rule sets. The
state code width in the CompactDFA is also represented by
E ¼ log2 S þ �, where � is the number of extra bits required
in the CompactDFA.

Table 1 presents the state code widths and extra bit widths
for Snort and ClamAV. In the AC NFA-c, the number of extra
bits � (0, 5) is much smaller than log2 S. In the CompactDFA,

YUN: AN EFFICIENT TCAM-BASED IMPLEMENTATION OF MULTIPATTERN MATCHING USING COVERED STATE ENCODING 217

Fig. 7. TCAM/SRAM entries using cover state encoding.

Fig. 8. State transitions for a given input sequence.

Fig. 9. Comparison of some state encoding schemes. (a) The number of
TCAM entries. (b) TCAM memory requirement.

however, the extra bit width � (18, 30) is comparable to log2 S.
Thus, the covered state encoding is more efficient than the
CompactDFA and Alicherry’s encoding.

The width of a TCAM entry is W ¼ E þ 8 since a TCAM
entry consists of a current state and an 8-bit input data. The
TCAM memory requirement isM ¼ T �W ¼ T � ðE þ 8Þ bits.
Thus, the TCAM memory requirements of AC NFA-c,
CompactDFA, and DFA-m are given by following equations:

Mcovered ¼Mcompact ¼ Tg � ðlog2 S þ � þ 8Þ;

MDFA�m ¼ Tg þ
Xdmax
i¼mþ1

Tc;i

 !
ðlog2 S þ 8ðm� 1Þ þ 8Þ:

The SRAM memory requirement is T � E bits since an
SRAM entry consists of the next state field.

Fig. 9b shows the TCAM memory requirements for DFA-
m (2 � m � 10), CompactDFA, and AC NFA-c. The DFA-1
is omitted in this figure due to its large value. This figure
shows that the TCAM memory requirement in the covered
state encoding is much less than those in the other schemes.
For the Snort rule set, the TCAM memory requirement of
DFA-m has the minimum value (¼ 7:3 Mbit) when m ¼ 7,
which is 4.3 times of Mcoveredð¼ 1:7 MbitÞ and the ClamAV
signatures have the minimum MDFA�mð¼ 218 MbitÞ when
m ¼ 7, which is 3.3 times of Mcoveredð¼ 66 Mbit). Mcovered is
about 58 percent of Mcompact for both Snort and ClamAV.
Thus, the TCAM memory requirement of AC NFA-c is the
smallest. In the AC NFA-c, the memory utilization per
character is 2.47 B/char for the Snort rule set and 4.04 B/
char for ClamAV signatures.

The commercially available TCAMs have the fixed entry
widths which are multiples of a specific size D (either 36 or
40 bits). When the required TCAM entry width is W , the
actual TCAM entry width is dWDe �D. In the AC NFA-c, the
actual TCAM entry widths are D for both Snort and
ClamAV since the required entry widths are W ¼ 17þ 8 ¼
25 for Snort and W ¼ 26þ 8 ¼ 34 for ClamAV. In the DFA-
m (m � 3) and CompactDFA, the actual TCAM entry
widths are 2D or more since the TCAM entry widths are
larger than 40. Thus, the actual TCAM memory requirement
in the AC NFA-c is also the smallest since the number of
TCAM entries and the TCAM entry width in the AC NFA-c
are smaller than in the other schemes.

4.2 Time Complexity

The lookup operation in the TCAM-based implementation
using the covered state encoding requires N transitions
for an input string with data length N since there is no
failure transition. This lookup speed is the same as the
DFA-based architecture.

The algorithm building all TCAM entries using the
covered state encoding takes at most Oðn lognÞ time, where

n is the number of states. This result is obtained as follows:
Step 1 requires obviously n steps. The time complexity of
Steps 2 and 4 is OðnÞ, which is that of tree traversal
algorithm. Step 3 includes sorting its children in decreasing
dimension order at each node. Let mi be the number of
children of node i. The sorting at each node takes
Oðmi logmiÞ. The sum of all mi’s is n� 1, in other words,P

i mi ¼ n� 1. The time complexity of the procedure
AssignCode is as follows:

O
X
i

mi logmi

 !
� O

X
i

mi logn

 !
¼ Oðn lognÞ:

The algorithm consists of four steps performing sequentially
and the time complexity of Step 3 is larger and dominant.

5 MULTICHARACTER PROCESSING USING COVERED

STATE ENCODING

We have proposed the covered state encoding scheme for
the efficient TCAM-based implementation of Aho-Corasick
algorithm. However, Aho-Corasick algorithm processes
only one character at a time and multicharacter processing
is required to achieve high-speed matching.

Alicherry et al. constructed the compressed DFA (cDFA)
that has transitions on multiple input characters, by
combining k consecutive states of Aho-Corasick DFA in
addition to proposing a state encoding scheme using
properties of the TCAM [1]. In the compressed DFA,
however, each transition corresponds to variable length of
input characters (at most k) and in rare cases, the input
pointer may be moved backward. Moreover, the compressed
DFA cannot use the covered state encoding in the TCAM-
based implementation because it has no failure transition.

In this section, we propose constructing a finite state
machine called k-AC NFA which has state transitions on k
input characters by combining k consecutive goto transi-
tions of the Aho-Corasick NFA. Since k-AC NFA consists of
goto transitions and failure transitions like the AC NFA, the
covered state encoding scheme can be used in the TCAM-
based implementation of the k-AC NFA. The major
advantage of the k-AC NFA is that the state transition
consumes exactly k input characters while in the com-
pressed DFA, the state transition is done on variable length
(between 1 and k) of characters.

5.1 Construction of k-AC NFA

The basic method constructing the k-AC NFA is similar to
the hardware-based method proposed in [12]. When k input
characters are processed at a time, the patterns can be
started at one of k possible offsets of the input characters. In
order to detect the patterns starting at any of k offsets, we
construct k finite state machines each of which corresponds
to one of k offsets.

For example, we consider the set of patterns {abc, xyapq,
pqrxyz}. Fig. 10a shows the AC NFA for these patterns. We
construct the 4-AC NFA by creating four state machines
each of which can detect the patterns starting at one of four
offsets, as shown in Fig. 10b. In Fig. 10, the states with the
same label are the same state and the gray colored states are
output states.

218 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

TABLE 1
The Code Widths for Snort and ClamAV

In Fig. 10b, the dotted lines represent the failure
transitions. The failure function of the k-AC NFA is the
same as that of the AC NFA and it is proved as follows:

Theorem 1. The failure function fkðsÞ of the k-AC NFA is the
same as the failure function fðsÞ of the corresponding AC NFA.

Proof. Let stringðsÞ be the sequence of input characters of
consecutive goto transitions from the initial state to state s
in the AC NFA. The failure function fðsÞ ¼ t if and only if
stringðtÞ is the longest suffix of stringðsÞ [16]. All the states
in the AC NFA also exist in the k-AC NFA. The goto
function gkðs; a1a2 . . . akÞ of the k-AC NFA corresponds to
k input characters. The stringkðsÞ of k-AC NFA is the same
as stringðsÞ of the AC NFA if �s are not included in
stringkðsÞ among the k input characters of goto transi-
tions. Since stringkðsÞ and stringðsÞ are the same, the
failure function fkðsÞ of k-AC NFA is the same as the
failure function fðsÞ of the corresponding AC NFA. tu

The optimization of the failure function is performed in
the same way as the AC NFA except using gkðÞ instead of
gðÞ as the goto function.

5.2 Implementation of k-AC NFA

The k-AC NFA can be implemented in the TCAM-based
architecture using the covered state encoding. In the k-AC
NFA, start transitions from the initial state may be done on
inputs with leading �s (e.g., � � pq) and output transitions
may be done on inputs with trailing �s (e.g., bc � �). Both
transitions may be simultaneously matched with k input
characters (e.g., bcpq) and we cannot determine the priority
between two transitions since they have no inclusion
relationship.

In order to solve this problem, we use two TCAMs called
a transition TCAM and an output TCAM, which can
simultaneously generate the matched entries. The output

transitions are stored in the output TCAM. Since the end
output states do not have goto transitions, the end output
transitions do not proceed the state transition further.
Therefore, the transition TCAM stores all the transitions
except end output transitions. The nonend output transi-
tions are stored in both TCAMs. The output TCAM detects
the final pattern matching and the transition TCAM
controls the state transition in the k-AC NFA.

Since the start transitions on inputs with leading �s and
the end output transition on inputs with trailing � are stored
in the transition TCAM and the output TCAM, respectively,
two transitions can generate the matching results simulta-
neously. If two TCAMs generate the matching results
simultaneously, the state is moved according to the result
of the transition TCAM and the output is generated by the
output TCAM.

Example. Fig. 11 shows entries of two TCAMs in the
implementation using the covered state encoding of the k-
AC NFA in Fig. 10. Fig. 12 shows the state transitions for a
given input data stream in this implementation. In Fig. 12,
the states inside parenthesis represent the states which
covers the current state and has the input field matched
with the input characters. For example, at state 13, the
input apqr is not matched with the entry of state 13 (the
last entry of output TCAM), but matched with an output
TCAM entry apq� of state 5, which generates the output of
state 8 (xyapq). It is also simultaneously matched with a
transition TCAM entry �pqr of the initial state, which
makes state transition to 11.

5.3 Evaluation of the Implementation of k-AC NFA

We evaluate the TCAM-based implementation of k-AC
NFA using the covered state encoding. The k-AC NFA of N
patterns has N output states. Since each output state has k
output transitions for all offsets in the k-AC NFA, the
number of output TCAM entries is To ¼ kN . Let Ne be the
number of end output states which have no goto transition.

YUN: AN EFFICIENT TCAM-BASED IMPLEMENTATION OF MULTIPATTERN MATCHING USING COVERED STATE ENCODING 219

Fig. 10. Construction of k-AC NFA (k ¼ 4). (a) AC NFA. (b) k-AC NFA.

Fig. 11. TCAM entries in the k-AC NFA.

Fig. 12. An Example of state transitions in k-AC NFA.

Since goto transitions to end output states are not included
in the transition TCAM, the number of transition TCAM
entries is Tt ¼ Tg �Ne, where Tg is the number of goto
transitions in the AC NFA. The total number of TCAM
entries is T ¼ Tt þ To ¼ Tg �Ne þ kN . If Ne ¼ N , then
T ¼ Tg þ ðk� 1ÞN .

Since the failure function of the k-AC NFA is the same as
that of the AC NFA, the bit size of encoded states is the same
as that of the AC NFA,E ¼ log2 S þ �, where S is the number
of states and � is the extra bit size of the covered state
encoding. The TCAM entry width of the k-AC NFA using the
covered state encoding is W ¼ E þ 8k ¼ log2 S þ � þ 8k,
where 8k is the input data width. The total TCAM memory
requirements of k-AC NFA are given as follows:

Mcovered;k ¼ ðTg �Ne þ kNÞðlog2 S þ � þ 8kÞ:

In the compressed DFA proposed by Alicherry, transi-
tions consist of compressed goto transitions and depth-i
transitions for all i > m. The number of TCAM entries in
cDFA-m is T ¼ Tg;k þ

Pdmax
i¼mþ1 Tc;i, where Tg;k is the number

of the compressed transitions in cDFA and depends on
multiple transition width k. The TCAM entry width is
W ¼ log2 S þ 8ðm� 1Þ þ log2 kþ 8k, where log2 k is the bit
size for shift value. The total TCAM memory requirement is
given by the following equation:

McDFA�m;k ¼ Tg;k þ
Xdmax
i¼mþ1

Tc;i

 !
ðlog2 S þ 8ðm� 1Þ

þ log2 kþ 8kÞ:

We evaluate the TCAM memory requirements of multi-
character processing schemes k-AC NFA and the com-
pressed DFA with depth m (cDFA-m) for the Snort rule set
v2.8. Fig. 13 shows the TCAM memory requirements of
various schemes for each k. Due to the efficiency of the
covered state encoding, the memory requirement of k-AC
NFA is less than that of any compressed DFA, where the
compressed DFA has the minimum memory requirement
when m ¼ 9 except k ¼ 1.

We investigate the pattern matching speed. In the k-AC
NFA, after k input characters are compared, the input
pointer is always advanced to exactly k characters. while
the compressed DFA has variable length transition width
and the average transition width is about 0:8k or less. In the

k-AC NFA using a covered state encoding, pattern

matching operation for an input string with length N can

be done in dN=ke transitions Thus, the k-AC NFA using a

covered state encoding is superior to the compressed DFA-

m in both the TCAM memory requirement and the pattern

matching speed.

6 CONCLUSION

In this paper, we proposed a covered state encoding scheme

for the TCAM-based implementation of Aho-Corasick

algorithm, which is a multiple pattern matching algorithm

widely used in network intrusion detection systems. The

covered state encoding takes advantage of “don’t care”

feature of TCAMs and information of failure transitions is

implicitly captured in the covered state encoding. If we use

the covered state encoding, the failure transitions do not

need to be implemented as TCAM entries since all the states

in the failure transition path can be simultaneously

examined. The covered state encoding requires the smaller

number of TCAM entries than other schemes since it is used

in NFA-based implementation and the failure transitions

are not needed. The time complexity of the algorithm

building TCAM entries using the covered state encoding is

Oðn lognÞ, where n is the number of states. Thus, the

covered state encoding enables an efficient TCAM-based

implementation of a multipattern matching algorithm.
We also proposed the scheme constructing the finite state

machine called k-AC NFA for multicharacter processing,
which can use a covered state encoding. The k-AC NFA
using the covered state encoding has the smaller TCAM
memory requirement and can process exact k characters at a
time. Thus, a covered state encoding can be efficiently used
in multicharacter processing.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology (No.2009-0077793).

REFERENCES

[1] M. Alicherry, M. Muthuprasanna, and V. Kumar, “High Speed
Pattern Matching for Network IDS/IPS,” Proc. 14th IEEE Int’l Conf.
Network Protocols (ICNP), vol. 11, pp. 187-196, 2006.

[2] M. Alicherry and M. Muthuprasanna, “Method and System for
Multi-Character Multi-Pattern Pattern Matching,” US Patent
Application No. 20080046423, Feb. 2008.

[3] M. Gould, R. Barrie, D. Williams, and N. de Jong, “Apparatus and
Method for Memory Efficient, Programmable, Pattern Matching
Finite State Machine Hardware,” US Patent No. 7082044 B2, July
2006.

[4] M. Gao, K. Zhang, and J. Lu, “Efficient Packet Matching for
Gigabit Network Intrusion Detection Using TCAMs,” Proc. 20th
Int’l Conf. Advanced Information Networking and Applications
(AINA), 2006.

[5] F. Yu, R. Katz, and T. Lakshman, “Gigabit Rate Packet Pattern-
Matching Using TCAM,” Proc. 12th IEEE Int’l Conf. Network
Protocols (ICNP ’04), pp. 174-183, 2004.

[6] Y. Weinsberg, S. Tzur-David, D. Dolev, and T. Anker, “High
Performance String Matching Algorithm for a Network Intrusion
Prevention System (NIPS),” Proc. IEEE High Performance Switching
and Routing (HPSR), pp. 147-154, 2006.

220 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 2, FEBRUARY 2012

Fig. 13. TCAM memory requirement of multicharacter processing.

[7] S. Dharmapurikar, M. Attig, and J. Lockwood, “Deep Packet
Inspection Using Parallel Bloom Filters,” IEEE Micro, vol. 24, no. 1,
pp. 52-61, Jan./Feb. 2004.

[8] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
Memory-Efficient String Matching Algorithms for Intrusion
Detection,” Proc. IEEE INFOCOM, vol. 4, pp. 2628-2639, 2004.

[9] L. Tan, B. Brotherton, and T. Sherwood, “Bit-Split String-Matching
Engines for Intrusion Detection and Prevention,” ACM Trans.
Architecture and Code Optimization, vol. 3, no. 1, pp. 3-34, 2006.

[10] J. van Lunteren, “High-Performance Pattern-Matching for Intru-
sion Detection,” Proc. IEEE INFOCOM, vol. 4, 2006.

[11] A. Bremler-Barr, D. Hay, and Y. Koral, “CompactDFA: Generic
State Machine Compression for Scalable Pattern Matching,” Proc.
IEEE INFOCOM, 2010.

[12] C. Clark and D. Schimmel, “Scalable Pattern Matching for High
Speed Networks,” Proc. 12th Ann. IEEE Symp. Field-Programmable
Custom Computing Machines (FCCM), 2004.

[13] B. Hutchings, R. Franklin, and D. Carver, “Assisting Network
Intrusion Detection with Reconfigurable Hardware,” Proc. 10th
Ann. IEEE Symp. Field-Programmable Custom Computing Machines
(FCCM), pp. 111-120, 2002.

[14] I. Sourdis and D. Pnevmatikatos, “Pre-Decoded Cams for Efficient
and High-Speed NIDS Pattern Matching,” Proc. 12th Ann. IEEE
Symp. Field-Programmable Custom Computing Machines (FCCM),
pp. 258-267, 2004.

[15] Y.H. Cho, S. Navab, and W.H. Mangione-Smith, “Specialized
Hardware for Deep Network Packet Filtering,” Proc. 12th Int’l
Conf. Field-Programmable Logic and Applications (FPL), pp. 337-357,
2002.

[16] A. Aho and M. Corasick, “Efficient String Matching: An Aid to
Bibliographic Search,” Comm. ACM, vol. 18, no. 6, pp. 333-340,
1975.

[17] D.E. Knuth, J. James, H. Morris, and V.R. Pratt, “Fast Pattern
Matching in Strings,” SIAM J. Computing, vol. 6, no. 2, pp. 323-350,
1977.

[18] SNORT Official Web Site, http://www.snort.org, 2011.
[19] ClamAV Official Web Site, http://www.clamav.net, 2011.

SangKyun Yun received the BS degree in
electronics engineering from Seoul National
University, Korea, in 1984, and the MS and
PhD degrees in electrical engineering from the
Korea Advanced Institute of Science and Tech-
nology (KAIST) in 1986 and 1995, respectively.
He is a professor in the Department of Computer
and Telecom. Engineering, Yonsei University,
Wonju, Korea. He worked at Hyundai Electro-
nics (now Hynix), Korea, from 1986 to 1990. He

was on the faculty of Seowon University, Cheongju, Korea, from 1992 to
2001. He was a visiting scholar in the Department of Electrical
Engineering and Computer Science at the University of Michigan, Ann
Arbor, and the Department of Electrical Engineering at the University of
Texas at Austin. His interests include embedded systems, reconfigur-
able systems, network security, and computer architecture. He is a
member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YUN: AN EFFICIENT TCAM-BASED IMPLEMENTATION OF MULTIPATTERN MATCHING USING COVERED STATE ENCODING 221

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

